Article 6N0SH Researchers Make A Surprising Discovery: Magnetism In A Common Material For Microelectronics

Researchers Make A Surprising Discovery: Magnetism In A Common Material For Microelectronics

by
hubie
from SoylentNews on (#6N0SH)

Arthur T Knackerbracket has processed the following story:

Nickel monosilicide (NiSi) is widely used to connect transistors in semiconductor circuits. Earlier theoretical calculations had incorrectly predicted that NiSi was not magnetic. As a result, researchers had never fully explored magnetism in NiSi.

Recently, however, scientists used neutron scattering to identify an elusive form of magnetic order in NiSi. The research is published in the journal Advanced Materials.

[...] Because NiSi is extensively used by the semiconductor industry, it is already compatible with chip manufacturing. Physicists used neutron scattering at the Spallation Neutron Source, a Department of Energy user facility at Oak Ridge National Laboratory, to uncover magnetic order in single crystal NiSi that had not been previously known.

[...] The robust magnetic structure and coupling of magnetic-electronic properties of NiSi offer the opportunity to use NiSi for magnetic memory applications. The research team also applied density functional theory combined with the self-(electron) interaction correction method (instead of using the local density approximation) to identify the origin of magnetism as arising from hybridization between Ni 3d orbitals and Si sp states.

Harnessing the newly discovered magnetism of NiSi in semiconductors may lead to faster computers and computer memory. The unique magnetism in NiSi is attractive because electronics that use magnetism to store and process data are reliable, fast, and small. The result is increased capabilities at lower costs. The work also highlights the need for improvements in how scientists apply conventional modeling to certain materials.

More information: Pousali Ghosh et al, NiSi: A New Venue for Antiferromagnetic Spintronics, Advanced Materials (2023). DOI: 10.1002/adma.202302120

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments