Can a technology called RAG keep AI models from making stuff up?
Enlarge (credit: Aurich Lawson | Getty Images)
We've been living through the generative AI boom for nearly a year and a half now, following the late 2022 release of OpenAI's ChatGPT. But despite transformative effects on companies' share prices, generative AI tools powered by large language models (LLMs) still have major drawbacks that have kept them from being as useful as many would like them to be. Retrieval augmented generation, or RAG, aims to fix some of those drawbacks.
Perhaps the most prominent drawback of LLMs is their tendency toward confabulation (also called hallucination"), which is a statistical gap-filling phenomenon AI language models produce when they are tasked with reproducing knowledge that wasn't present in the training data. They generate plausible-sounding text that can veer toward accuracy when the training data is solid but otherwise may just be completely made up.
Relying on confabulating AI models gets people and companies in trouble, as we've covered in the past. In 2023, we saw two instances of lawyers citing legal cases, confabulated by AI, that didn't exist. We've covered claims against OpenAI in which ChatGPT confabulated and accused innocent people of doing terrible things. In February, we wrote about Air Canada's customer service chatbot inventing a refund policy, and in March, a New York City chatbot was caught confabulating city regulations.