Article 6QD58 New Luminescent Material Could Be The Answer To Crumbling Infrastructure

New Luminescent Material Could Be The Answer To Crumbling Infrastructure

by
janrinok
from SoylentNews on (#6QD58)

Arthur T Knackerbracket has processed the following story:

Identifying deteriorating infrastructure can be as challenging as fixing it. However, researchers at Tohoku University have made this process easier with the development of an innovative new material.

The material responds to mechanical stimuli by recording stress history through a luminescent effect called an afterglow. This information is stored for a long time, and by applying the material to the surfaces of structures, researchers can observe changes in the afterglow to determine the amount of stress the material has experienced.

What makes our material truly innovative is that it operates without a power supply, complex equipment, or on-site observation and is easily combined with IoT technology," points out Tohoku University professor and corresponding author of the study, Chao-Nan Xu.

In Japan, aging infrastructure has become a significant problem, leading to an increased demand for new diagnostic technologies that prevent accidents and/or extend the life of structures.

Mechanoluminescent materials exhibit luminescence when mechanically stimulated, and technologies such as crack detection and stress visualization have been developed by applying this material to the surface of structures. But the luminescence can only be observed at the moment of mechanical stimulation, and information about past mechanical stimuli cannot be retrieved.

Researchers have explored various materials capable of recording past mechanical loading histories. These materials typically combine stress-luminescent materials with photosensitive materials, creating a system where the material emits light in response to mechanical stress, and this light can be preserved and later analyzed to reconstruct the stress history. However, these materials face several challenges: complex layering structures, dark reactions, and long-term recording performance. Additionally, while certain fluorophores reveal past loading history when subjected to heat, the application has been limited to materials capable of withstanding high temperatures.

Xu and her colleagues discovered a simple and environmentally friendly method to record stress using Pr-doped Li0.12 Na0.88 NbO3 (LNNO). This LNNO had a mechanical recording functionality, meaning it could retrieve even past stress events.

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments