Researchers need more proof from Harvard of the claim for the creation of solid metallic hydrogen which is a holy grail of physics
by noreply@blogger.com (brian wang) from NextBigFuture.com on (#2B4JA)
Researchers doubt the Harvard claim that solid metallic hydrogen has been created Ranga Dias and Isaac Silvera, both physicists at Harvard University in Cambridge, Massachusetts, first posted a report of their results on the arXiv preprint server last October, which attracted immediate criticism. A peer-reviewed version of the report was published on 26 January in Science2, but sceptics say that it includes little new information. Silvera and Dias say that they wanted to publish their first observation before making further tests on their fragile material.
Physicists have crushed tiny samples of hydrogen between diamond anvils at pressures exceeding those in the centre of Earth. The experiments are delicate and fraught with potential for error. Researchers have seen the material change from transparent to dark as it is compressed, which suggests that as electrons are crowded together, they are able to absorb photons of visible light. But no one has proven the existence of metallic, shiny hydrogen, which would reflect light.
Dias and Silvera say that they were able to squeeze their hydrogen gas at greater pressures than anyone else has managed. To do so, they used an anvil that can fit inside a cryostat, enabling them to cool their hydrogen sample to just above absolute zero. They also say they have found a better way to polish the tips of their diamonds, to remove irregularities that could break the gems. They then turned a screw to crank up the pressure to 495 billion pascals (495 GPa), or almost 5 million times higher than atmospheric pressure at sea level.
"Then, suddenly, it becomes a lustry, reflective sample, which you can only believe is a metal," Silvera says. Seen through a microscope, the sample appeared shiny, and it reflected light in the way metallic hydrogen should do, he says.
Other researchers aren't convinced. It's far from clear that the shiny material the researchers see is actually hydrogen, says geophysicist Alexander Goncharov of the Carnegie Institution for Science in Washington DC. Goncharov has criticized the Silvera lab's methods before. He suggests that the shiny material may be alumina (aluminium oxide), which coats the tips of the diamonds in the anvil, and may behave differently under pressure.
Loubeyre and others think that Silvera and Dias are overestimating the pressure that they reached, by relying on an imprecise calibration between turns of the screw and pressure inside the anvil. Eugene Gregoryanz, a physicist at the University of Edinburgh, UK, adds that part of the problem is that the researchers took only a single detailed measurement of their sample at the highest pressure - making it hard to see how pressure shifted during the experiment.
"If they want to be convincing, they have to redo the measurement, really measuring the evolution of pressure," says Loubeyre. "Then they have to show that, in this pressure range, the alumina is not becoming metallic."
But Silvera says that he just wanted to get the news out there before making confirmation tests, which, he says, could break their precious specimen. "We wanted to publish this breakthrough event on this sample," he says. To preserve the material, he and Dias have kept it in the cryostat; the lab has only two cryostats, and the other is in use for other experiments, he says. "Now that the paper has been accepted, we're going to do further experiments."
Read more
Physicists have crushed tiny samples of hydrogen between diamond anvils at pressures exceeding those in the centre of Earth. The experiments are delicate and fraught with potential for error. Researchers have seen the material change from transparent to dark as it is compressed, which suggests that as electrons are crowded together, they are able to absorb photons of visible light. But no one has proven the existence of metallic, shiny hydrogen, which would reflect light.
Dias and Silvera say that they were able to squeeze their hydrogen gas at greater pressures than anyone else has managed. To do so, they used an anvil that can fit inside a cryostat, enabling them to cool their hydrogen sample to just above absolute zero. They also say they have found a better way to polish the tips of their diamonds, to remove irregularities that could break the gems. They then turned a screw to crank up the pressure to 495 billion pascals (495 GPa), or almost 5 million times higher than atmospheric pressure at sea level.
"Then, suddenly, it becomes a lustry, reflective sample, which you can only believe is a metal," Silvera says. Seen through a microscope, the sample appeared shiny, and it reflected light in the way metallic hydrogen should do, he says.
Other researchers aren't convinced. It's far from clear that the shiny material the researchers see is actually hydrogen, says geophysicist Alexander Goncharov of the Carnegie Institution for Science in Washington DC. Goncharov has criticized the Silvera lab's methods before. He suggests that the shiny material may be alumina (aluminium oxide), which coats the tips of the diamonds in the anvil, and may behave differently under pressure.
Loubeyre and others think that Silvera and Dias are overestimating the pressure that they reached, by relying on an imprecise calibration between turns of the screw and pressure inside the anvil. Eugene Gregoryanz, a physicist at the University of Edinburgh, UK, adds that part of the problem is that the researchers took only a single detailed measurement of their sample at the highest pressure - making it hard to see how pressure shifted during the experiment.
"If they want to be convincing, they have to redo the measurement, really measuring the evolution of pressure," says Loubeyre. "Then they have to show that, in this pressure range, the alumina is not becoming metallic."
But Silvera says that he just wanted to get the news out there before making confirmation tests, which, he says, could break their precious specimen. "We wanted to publish this breakthrough event on this sample," he says. To preserve the material, he and Dias have kept it in the cryostat; the lab has only two cryostats, and the other is in use for other experiments, he says. "Now that the paper has been accepted, we're going to do further experiments."
Read more