Smaller and smarter MEMS and electronics for bullets that can monitor a building during urban warfare
by noreply@blogger.com (brian wang) from NextBigFuture.com on (#2BZNZ)
Engineers at the U.S. Army Armament Research, Development and Engineering Center, or ARDEC, have been making advancements in an initiative called "Component Miniaturization."
Its mission focuses on making armament systems more precise, energy efficient, scalable and effective by reducing the size of critical components in sub-systems such as safe and arm devices, electronics packages, power supplies and inertial measurement systems. Size reductions in one sub-system can have a positive effect on another. For example, a smaller and more efficient electronics package design can reduce power supply demands as well as reduce the need for heavier supporting structures. The space savings and mass savings could then be used to add a larger explosive warhead or increase control surfaces for additional maneuverability. The reduced size and mass could also allow for additional portability to smaller calibers or to systems with greater launch velocities.
The initiative involves several discrete projects, some of which are described below:
Electronics and control systems for sensors in bullets and projectiles
ARDEC is moving forward, along with private industry, in reducing the size of complex subsystems.
Taking advantage of modern electronic fabrication techniques in the Fuze Development Center and other on-site facilities, ARDEC engineers and scientists develop prototypes that demonstrate the ability to transform larger subsystems to smaller calibers.
The Small Arms Deployable Sensor Network is one such example.
"This allows the Soldier to gather intelligence on a building without actually entering the building, so they don't have to put themselves in harm's way," said William Smith, the Director of Fuze and Precision Armaments.
"Say you cleared a building, you could leave these behind, or you could shoot them in through the windows of the building and it would sense and report the presence of an intruder in the building," said Smith. "It has microphones, a magnetometer, a still image camera, GPS and a mesh radio network."
Other examples are the development of proximity sensors small enough to fit into 30mm ammunition, guidance and control systems that fit into 40mm projectiles, miniature laser igniters for small caliber ammunition and small, high-density power sources.
Read more
Its mission focuses on making armament systems more precise, energy efficient, scalable and effective by reducing the size of critical components in sub-systems such as safe and arm devices, electronics packages, power supplies and inertial measurement systems. Size reductions in one sub-system can have a positive effect on another. For example, a smaller and more efficient electronics package design can reduce power supply demands as well as reduce the need for heavier supporting structures. The space savings and mass savings could then be used to add a larger explosive warhead or increase control surfaces for additional maneuverability. The reduced size and mass could also allow for additional portability to smaller calibers or to systems with greater launch velocities.
The initiative involves several discrete projects, some of which are described below:
Electronics and control systems for sensors in bullets and projectiles
ARDEC is moving forward, along with private industry, in reducing the size of complex subsystems.
Taking advantage of modern electronic fabrication techniques in the Fuze Development Center and other on-site facilities, ARDEC engineers and scientists develop prototypes that demonstrate the ability to transform larger subsystems to smaller calibers.
The Small Arms Deployable Sensor Network is one such example.
"This allows the Soldier to gather intelligence on a building without actually entering the building, so they don't have to put themselves in harm's way," said William Smith, the Director of Fuze and Precision Armaments.
"Say you cleared a building, you could leave these behind, or you could shoot them in through the windows of the building and it would sense and report the presence of an intruder in the building," said Smith. "It has microphones, a magnetometer, a still image camera, GPS and a mesh radio network."
Other examples are the development of proximity sensors small enough to fit into 30mm ammunition, guidance and control systems that fit into 40mm projectiles, miniature laser igniters for small caliber ammunition and small, high-density power sources.
Read more