RRAM/PCM-Based Brain-Gates
by noreply@blogger.com (brian wang) from NextBigFuture.com on (#2E9Z0)
An international team from Milan Polytechnic, Italy and Micron, Boise Idaho provided an update on the their work using RRAMs for unsupervised learning. Unsupervised learning is the ability to learn and recognize random patterns. Supervised learning would be learning the images of say traffic lights and hand writing.
The team offered solutions for spike-time dependent plasticity (STDP) and spike-rate dependent plasticity (SRDP) with a RRAM at the core of each circuit solution.
Late last year at IEDM-2016 Toshiba with Hynix announced plans for a 4Gbit MRAM and even although perhaps 3 to 4 years away from a commercial and proven product, plus the progress made by other MRAM vendors must be read as danger signals for PCM/RRAM product developers. It may be time for the PCM and RRAM communities to look at brain-gates as a potentially more rewarding future direction where their technologies will be able to offer unique features. Brain-gate: a circuit or array where the unique features of PCM/RRAM are integrated with conventional silicon.
Source: Ron Neale
Read more
The team offered solutions for spike-time dependent plasticity (STDP) and spike-rate dependent plasticity (SRDP) with a RRAM at the core of each circuit solution.
Late last year at IEDM-2016 Toshiba with Hynix announced plans for a 4Gbit MRAM and even although perhaps 3 to 4 years away from a commercial and proven product, plus the progress made by other MRAM vendors must be read as danger signals for PCM/RRAM product developers. It may be time for the PCM and RRAM communities to look at brain-gates as a potentially more rewarding future direction where their technologies will be able to offer unique features. Brain-gate: a circuit or array where the unique features of PCM/RRAM are integrated with conventional silicon.
Source: Ron Neale
Read more