Dwave 2X quantum annealing machine 90% accurate in recognizing tree cover in aerial photos which was better than conventional computers
by noreply@blogger.com (brian wang) from NextBigFuture.com on (#2FC38)
Physicist Edward Boyda of St. Mary's College of California in Moraga and colleagues fed hundreds of NASA satellite images of California into the D-Wave 2X processor, which contains 1152 qubits. The researchers asked the computer to consider dozens of features-hue, saturation, even light reflectance-to determine whether clumps of pixels were trees as opposed to roads, buildings, or rivers. They then told the computer whether its classifications were right or wrong so that the computer could learn from its mistakes, tweaking the formula it uses to determine whether something is a tree.
After it was trained, the D-Wave was 90% accurate in recognizing trees in aerial photographs of Mill Valley, California, the team reports in PLOS ONE. It was only slightly more accurate than a conventional computer would have been at the same problem. But the results demonstrate how scientists can program quantum computers to "look" at and analyze images, and opens up the possibility of using them to solve other complex problems that require heavy data crunching.
PLOS One - Deploying a quantum annealing processor to detect tree cover in aerial imagery of California
Read more
After it was trained, the D-Wave was 90% accurate in recognizing trees in aerial photographs of Mill Valley, California, the team reports in PLOS ONE. It was only slightly more accurate than a conventional computer would have been at the same problem. But the results demonstrate how scientists can program quantum computers to "look" at and analyze images, and opens up the possibility of using them to solve other complex problems that require heavy data crunching.
PLOS One - Deploying a quantum annealing processor to detect tree cover in aerial imagery of California
Read more