Over 99% of available solar spectrum captured with new 44.5% efficient solar cell
Scientists have designed and constructed a prototype for a new solar cell that integrates multiple cells stacked into a single device capable of capturing nearly all of the energy in the solar spectrum. The new design converts direct sunlight to electricity with 44.5 percent efficiency, giving it the potential to become the most efficient solar cell in the world.
The approach is different from the solar panels one might commonly see on rooftops or in fields. The new device uses concentrator photovoltaic (CPV) panels that employ lenses to concentrate sunlight onto tiny, micro-scale solar cells. Because of their small size-less than one millimeter square-solar cells utilizing more sophisticated materials can be developed cost effectively.
The stacked cell acts almost like a sieve for sunlight, with the specialized materials in each layer absorbing the energy of a specific set of wavelengths. By the time the light is funneled through the stack, just under half of the available energy has been converted into electricity. By comparison, the most common solar cell today converts only a quarter of the available energy into electricity.
"Around 99 percent of the power contained in direct sunlight reaching the surface of Earth falls between wavelengths of 250 nm and 2500 nm, but conventional materials for high-efficiency multi-junction solar cells cannot capture this entire spectral range," said Matthew Lumb, lead author of the study and a research scientist at the GW School of Engineering and Applied Science. "Our new device is able to unlock the energy stored in the long-wavelength photons, which are lost in conventional solar cells, and therefore provides a pathway to realizing the ultimate multi-junction solar cell."
This approach has two novel aspects.
1. it uses a family of materials based on gallium antimonide (GaSb) substrates, which are usually found in applications for infra-red lasers and photodetectors. The novel GaSb-based solar cells are assembled into a stacked structure along with high efficiency solar cells grown on conventional substrates that capture shorter wavelength solar photons.
2. the stacking procedure uses a technique known as transfer-printing, which enables three dimensional assembly of these tiny devices with a high degree of precision.
This particular solar cell is very expensive, however researchers believe it was important to show the upper limit of what is possible in terms of efficiency. Despite the current costs of the materials involved, the technique used to create the cells shows much promise. Eventually a similar product may be brought to market, enabled by cost reductions from very high solar concentration levels and technology to recycle the expensive growth substrates.
Advanced Energy Materials - GaSb-Based Solar Cells for Full Solar Spectrum Energy Harvesting
Abstract
In this work, a multijunction solar cell is developed on a GaSb substrate that can efficiently convert the long-wavelength photons typically lost in a multijunction solar cell into electricity. A combination of modeling and experimental device development is used to optimize the performance of a dual junction GaSb/InGaAsSb concentrator solar cell. Using transfer printing, a commercially available GaAs-based triple junction cell is stacked mechanically with the GaSb-based materials to create a four-terminal, five junction cell with a spectral response range covering the region containing over 99% of the available direct-beam power from the Sun reaching the surface of the Earth. The cell is assembled in a mini-module with a geometric concentration ratio of 744 suns on a two-axis tracking system and demonstrated a combined module efficiency of 41.2%, measured outdoors in Durham, NC. Taking into account the measured transmission of the optics gives an implied cell efficiency of 44.5%.