Neutrino Produced In A Cosmic Collider Far, Far Away
Arthur T Knackerbracket has found the following story:
The neutrino event IceCube 170922A, detected with IceCube at the South Pole, appears to originate from the distant active galaxy TXS 0506+056, at a distance of 3.8 billion light years.
An team of researchers led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, studied high-resolution radio observations of the source between 2009 and 2018, before and after the neutrino event. The team proposes that the enhanced neutrino activity during an earlier neutrino flare and the single neutrino could have been generated by a cosmic collision within TXS 0506+056. The clash of jet material close to a supermassive black hole seems to have produced the neutrinos.On July 12, 2018, the IceCube collaboration announced the detection of the first high-energy neutrino, IceCube-170922A, which could be traced back to a distant cosmic origin. While the cosmic origin of neutrinos had been suspected for quite some time, this was the first neutrino from outer space whose origin could be confirmed.
The "home" of this neutrino is an Active Galactic Nucleus (AGN) - a galaxy with a supermassive black hole as central engine. An international team could now clarify the production mechanism of the neutrino and found an equivalent to a collider on Earth: a cosmic collision of jetted material.
AGN are the most energetic objects in our Universe. Powered by a supermassive black hole, matter is being accreted and streams of plasma (so-called jets) are launched into intergalactic space. BL Lac objects form a special class of these AGN, where the jet is directly pointing at us and dominating the observed radiation.
The neutrino event IceCube-170922A appears to originate from the BL Lac object TXS 0506+056, a galaxy at a redshift of z=0.34, corresponding to a light travel distance of 3.8 billion light years. An analysis of archival IceCube data by the IceCube Collaboration had revealed evidence of an enhanced neutrino acitvity earlier, between September 2014 and March 2015.
doi=10.1051/0004-6361/201935422
Read more of this story at SoylentNews.