Big Data Technique Reveals Previously Unknown Capabilities Of Common Materials
Arthur T Knackerbracket has found the following story:
When scientists and engineers discover new ways to optimize existing materials, it paves the way for innovations that make everything from our phones and computers to our medical equipment smaller, faster, and more efficient.
According to research published today by Nature Journal NPG Asia Materials, a group of researchers -- led by Edwin Fohtung, an associate professor of materials science and engineering at Rensselaer Polytechnic Institute -- have found a new way to optimize nickel by unlocking properties that could enable numerous applications, from biosensors to quantum computing.
They demonstrated that when nickel is made into extremely small, single-crystal nanowires and subjected to mechanical energy, a huge magnetic field is produced, a phenomenon known as giant magnetostriction.
Inversely, if a magnetic field is applied to the material, then the atoms within will change shape. This displacement could be exploited to harvest energy. That characteristic, Fohtung said, is useful for data storage and data harvesting, even biosensors. Though nickel is a common material, its promise in these areas wasn't previously known.
Read more of this story at SoylentNews.