A Soft Robotic Insect That Survives Being Flattened by a Fly Swatter
"upstart" writes:
Submitted via IRC for Bytram
A soft robotic insect that survives being flattened by a fly swatter
Researchers at EPFL's School of Engineering have developed a soft robotic insect, propelled at 3 cm per second by artificial muscles.
The team developed two versions of this soft robot, dubbed DEAnsect. The first, tethered using ultra-thin wires, is exceptionally robust. It can be folded, hit with a fly swatter or squashed by a shoe without impacting its ability to move. The second is an untethered model that is fully wireless and autonomous, weighing less than 1 gram and carrying its battery and all electronic components on its back. This intelligent insect is equipped with a microcontroller for a brain and photodiodes as eyes, allowing it to recognize black and white patterns, enabling DEAnsect to follow any line drawn on the ground.
DEAnsect was developed by a team at EPFL's Soft Transducers Laboratory (LMTS), working with the Integrated Actuators Laboratory (LAI) and colleagues from the University of Cergy-Pontoise, France. The research was published in Science Robotics.
DEAnsect is equipped with dielectric elastomer actuators (DEAs), a type of hair-thin artificial muscle that propels it forward through vibrations. These DEAs are the main reason why the insect is so light and quick. They also enable it to move over different types of terrain, including undulating surfaces.
An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators [$], Science Robotics (DOI: 10.1126/scirobotics.aaz6451)
Read more of this story at SoylentNews.