Article 4YG3A Tools Predict How Fast Code Will Run on a Chip

Tools Predict How Fast Code Will Run on a Chip

by
martyb
from SoylentNews on (#4YG3A)

upstart writes in with an IRC submission for SoyCow1337:

Tool predicts how fast code will run on a chip:

[...] In [a] series of conference papers, the researchers describe a novel machine-learning pipeline that automates this process, making it easier, faster, and more accurate. In a paper presented at the International Conference on Machine Learning in June, the researchers presented Ithemal, a neural-network model that trains on labeled data in the form of "basic blocks" - fundamental snippets of computing instructions - to automatically predict how long it takes a given chip to execute previously unseen basic blocks. Results suggest Ithemal performs far more accurately than traditional hand-tuned models.

Then, at the November IEEE International Symposium on Workload Characterization, the researchers presented a benchmark suite of basic blocks from a variety of domains, including machine learning, compilers, cryptography, and graphics that can be used to validate performance models. They pooled more than 300,000 of the profiled blocks into an open-source dataset called BHive. During their evaluations, Ithemal predicted how fast Intel chips would run code even better than a performance model built by Intel itself.

Ultimately, developers and compilers can use the tool to generate code that runs faster and more efficiently on an ever-growing number of diverse and "black box" chip designs. "Modern computer processors are opaque, horrendously complicated, and difficult to understand. It is also incredibly challenging to write computer code that executes as fast as possible for these processors," says co-author on all three papers Michael Carbin, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS) and a researcher in the Computer Science and Artificial Intelligence Laboratory (CSAIL). "This tool is a big step forward toward fully modeling the performance of these chips for improved efficiency."

Most recently, in a paper presented at the NeurIPS conference in December, the team proposed a new technique to automatically generate compiler optimizations. Specifically, they automatically generate an algorithm, called Vemal, that converts certain code into vectors, which can be used for parallel computing. Vemal outperforms hand-crafted vectorization algorithms used in the LLVM compiler - a popular compiler used in the industry.

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments