Jellyfish Triple Swimming Speed Through Cybernetic Implants
takyon writes:
Sea Jellies Triple Swimming Speed Through Cybernetic Implants
It's going to be a very, very long time before robots come anywhere close to matching the power-efficient mobility of animals, especially at small scales. Lots of folks are working on making tiny robots, but another option is to just hijack animals directly, by turning them into cyborgs. We've seen this sort of thing before with beetles, but there are many other animals out there that can be cyborgized. Researchers at Stanford and Caltech are giving sea jellies a try, and remarkably, it seems as though cyborg enhancements actually make the jellies more capable than they were before.
[...] The researchers, Nicole W. Xu and John O. Dabiri, chose a friendly sort of sea jelly called Aurelia aurita, which is "an oblate species of jellyfish comprising a flexible mesogleal bell and monolayer of coronal and radial muscles that line the subumbrellar surface," so there you go. To swim, jellies actuate the muscles in their bells, which squeeze water out and propel them forwards. These muscle contractions are controlled by a relatively simple stimulus of the jelly's nervous system that can be replicated through external electrical impulses.
To turn the sea jellies into cyborgs, the researchers developed an implant consisting of a battery, microelectronics, and bits of cork and stainless steel to make things neutrally buoyant, plus a wooden pin, which was used to gently impale each jelly through the bell to hold everything in place. While non-cyborg jellies tended to swim with a bell contraction frequency of 0.25 Hz, the implant allowed the researchers to crank the cyborg jellies up to a swimming frequency of 1 Hz.
Peak speed was achieved at 0.62 Hz, resulting in the jellies traveling at nearly half a body diameter per second (4-6 centimeters per second), which is 2.8x their typical speed. More importantly, calculating the cost of transport for the jellies showed that the 2.8x increase in speed came with only a 2x increase in metabolic cost, meaning that the cyborg sea jelly is both faster and more efficient.
Low-power microelectronics embedded in live jellyfish enhance propulsion (open, DOI: 10.1126/sciadv.aaz3194) (DX)
Read more of this story at SoylentNews.