Article 50EFZ Chlamydia-Related Bacteria Discovered Deep Below the Arctic Ocean

Chlamydia-Related Bacteria Discovered Deep Below the Arctic Ocean

by
Fnord666
from SoylentNews on (#50EFZ)

upstart writes in with an IRC submission for Bytram:

Chlamydia-related bacteria discovered deep below the Arctic Ocean:

Chlamydia are infamous for causing sexually transmitted infections in humans and animals or even amoeba. An international team of researchers have now discovered diverse populations of abundant Chlamydia living in deep Arctic ocean sediments. They live under oxygen-devoid conditions, high pressure and without an apparent host organism. Their study, published in Current Biology today, provides new insights into how Chlamydia became human and animal pathogens.

[...] An international group of researchers report the discovery of numerous new species of Chlamydiae growing in deep Arctic Ocean sediments, in absence of any obvious host organisms. The researchers had been exploring microbes that live over 3 km below the ocean surface and several meters into the ocean seafloor sediment during an expedition to Loki's Castle, a deep-sea hydrothermal vent field located in the Arctic Ocean in-between Iceland, Norway, and Svalbard. This environment is devoid of oxygen and macroscopic life forms. Unexpectedly, the research team came across highly abundant and diverse relatives of Chlamydia. "Finding Chlamydiae in this environment was completely unexpected, and of course begged the question what on earth were they doing there?" says Jennah Dharamshi from Uppsala University in Sweden and lead author of the study.

The team of researchers had been working with metagenomic data-obtained by collectively sequencing the genetic material of all organisms that live in an environment-which doesn't rely on growing organisms in the lab. "The vast majority of life on earth is microbial, and currently most of it can't be grown in the lab," explains Thijs Ettema, professor in Microbiology at Wageningen University & Research in The Netherlands who led the work. "By using genomic methods, we obtained a more clear image on the diversity of life. Every time we explore a different environment, we discover groups of microbes that are new to science. This tells us just how much is still left to discover."

Journal Information:
Jennah E. Dharamshi, Daniel Tamarit,Laura Eme, ..., Steffen L. Jirgensen,Anja Spang, Thijs J.G. Ettema.Marine Sediments Illuminate Chlamydiae Diversity and EvolutionCurrent Biology (2020)

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments