Article 50WA7 Nanostructured Rubber-Like Material with Optimal Properties Could Replace Human Tissue

Nanostructured Rubber-Like Material with Optimal Properties Could Replace Human Tissue

by
Fnord666
from SoylentNews on (#50WA7)

Arthur T Knackerbracket has found the following story:

Researchers from Chalmers University of Technology, Sweden, have created a new, rubber-like material with a unique set of properties, which could act as a replacement for human tissue in medical procedures. The material has the potential to make a big difference to many people's lives. The research was recently published in the highly regarded scientific journal ACS Nano.

In the development of medical technology products, there is a great demand for new naturalistic materials suitable for integration with the body. Introducing materials into the body comes with many risks, such as serious infections, among other things. Many of the substances used today, such as Botox, are very toxic. There is a need for new, more adaptable materials.

In the new study, the Chalmers researchers developed a material consisting solely of components that have already been shown to work well in the body.

[...] "We were really surprised that the material turned to be very soft, flexible and extremely elastic. It would not work as a bone replacement material, we concluded. But the new and unexpected properties made our discovery just as exciting," says Anand Kumar Rajasekharan, PhD in Materials Science and one of the researchers behind the study.

The results showed that the new rubber-like material may be appropriate for many applications which require an uncommon combination of properties -- high elasticity, easy processability, and suitability for medical uses.

"The first application we are looking at now is urinary catheters. The material can be constructed in such a way that prevents bacteria from growing on the surface, meaning it is very well suited for medical uses," says Martin Andersson, research leader for the study and Professor of Chemistry at Chalmers.

Journal Reference:

Anand K. Rajasekharan, Christoffer Gyllensten, Edvin Blomstrand, Marianne Liebi, Martin Andersson. Tough Ordered Mesoporous Elastomeric Biomaterials Formed at Ambient Conditions. ACS Nano, 2019; 14 (1): 241 DOI: 10.1021/acsnano.9b01924

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments