Scientists Explore the Power of Radio Waves to Help Control Fusion Reactions
upstart writes in with an IRC submission for Bytram:
Scientists explore the power of radio waves to help control fusion reactions:
A key challenge to capturing and controlling fusion energy on Earth is maintaining the stability of plasma -- the electrically charged gas that fuels fusion reactions -- and keeping it millions of degrees hot to launch and maintain fusion reactions. This challenge requires controlling magnetic islands, bubble-like structures that form in the plasma in doughnut-shaped tokamak fusion facilities. These islands can grow, cool the plasma and trigger disruptions -- the sudden release of energy stored in the plasma -- that can halt fusion reactions and seriously damage the fusion facilities that house them.
Research by scientists at Princeton University and at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) points toward improved control of the troublesome magnetic islands in ITER, the international tokamak under construction in France, and other future fusion facilities that cannot allow large disruptions. "This research could open the door to improved control schemes previously deemed unobtainable," said Eduardo Rodriguez, a graduate student in the Princeton Program in Plasma Physics and first author of a paper in Physics of Plasmas that reports the findings.
The research follows up on previous work by Allan Reiman and Nat Fisch, which identified a new effect called "RF [radio frequency] current condensation" that can greatly facilitate the stabilization of magnetic islands. The new Physics of Plasmas paper shows how to make optimal use of the effect. Reiman is a Distinguished Research Fellow at PPPL and Fisch is a Princeton University professor and Director of the Princeton Program in Plasma Physics and Associate Director of Academic Affairs at PPPL.
[...] The new paper, based on a simplified analytical model, focuses on use of RF waves to heat the islands and drive electric current that causes them to shrink and disappear. When the temperature gets sufficiently high, complicated interactions can occur that lead to the RF current condensation effect, which concentrates the current in the center of the island and can greatly enhance the stabilization. But as the temperature increases, and the gradient of the temperature between the colder edge and the hot interior of the island grows larger, the gradient can drive instabilities that make it more difficult to increase the temperature further.
Journal Reference
E. Rodriguez, A. H. Reiman, N. J. Fisch. RF current condensation in the presence of turbulent enhanced transport, Physics of Plasmas (DOI: 10.1063/5.0001881)
Read more of this story at SoylentNews.