Waveguide Array Transports Light Without Distortion
Arthur T Knackerbracket has found the following story:
One of the challenges of optical microscopy is to continually increase the imaging power, or resolution. In the past three hundred odd years, scientists have been building ever-better microscopes. The limit, for a long time, was determined by only two factors: the contrast of the object being viewed, and the resolving power of the optics in the microscope. The last 50 years, in particular, have led to an explosion in techniques to improve both the contrast of object and the quality of the optics.
One such technology is called a superlens. The superlens makes use of some of the peculiarities of waves to be able to resolve details that would otherwise be hidden from view. Now, researchers from Nanjing University in China have published results on a waveguide array that provides many of the benefits of a superlens. Along with that, the waveguide array does not have the technological difficulties that are usually associated with superlens fabrication.
[...] A superlens is designed to capture these detail-holding evanescent waves. To enable that, the lens must be constructed from a metamaterial that has a negative refractive index (normal materials have a positive refractive index). However, metamaterials are not easy to make, and don't perform well. Most of the light that hits a superlens is reflected from it, while internally, the substances that are used to create the metamaterial absorb a lot of light. Hence, the lens captures fine details, but the image contrast is poor.
Read more of this story at SoylentNews.