Article 590M9 Engineering a battery fast enough to make recharging like refueling

Engineering a battery fast enough to make recharging like refueling

by
John Timmer
from Ars Technica - All content on (#590M9)
WikimediaCommons_Orthorhombic_bulk_black

Enlarge / Layers of phosphorene sheets form black carbon. (credit: Wikimedia Commons)

Right now, electric vehicles are limited by the range that their batteries allow. That's because recharging the vehicles, even under ideal situations, can't be done as quickly as refueling an internal combustion vehicle. So far, most of the effort on extending the range has been focused on increasing a battery's capacity. But it could be just as effective to create a battery that can charge much more quickly, making a recharge as fast and simple as filling your tank.

There is no shortage of ideas about how this might be arranged, but a paper published earlier this week in Science suggests an unusual way that it might be accomplished: using a material called black phosphorus, which forms atom-thick sheets with lithium-sized channels in it. On its own, black phosphorus isn't a great material for batteries, but a Chinese-US team has figured out how to manipulate it so it works much better. Even if black phosphorus doesn't end up working out as a battery material, the paper provides some insight into the logic and process of developing batteries.

Paint it black

So, what is black phosphorus? The easiest way to understand it is by comparisons to graphite, a material that's already in use as an electrode for lithium-ion batteries. Graphite is a form of carbon that's just a large collection of graphene sheets layered on top of each other. Graphene, in turn, is a sheet formed by an enormous molecule composed of carbon atoms bonded to each other, with the carbons arranged in a hexagonal pattern. In the same way, black phosphorus is composed of many layered sheets of an atom-thick material called phosphorene.

Read 12 remaining paragraphs | Comments

index?i=9vVVv88-1Ss:zVNS20LvGNY:V_sGLiPB index?i=9vVVv88-1Ss:zVNS20LvGNY:F7zBnMyn index?d=qj6IDK7rITs index?d=yIl2AUoC8zA
External Content
Source RSS or Atom Feed
Feed Location http://feeds.arstechnica.com/arstechnica/index
Feed Title Ars Technica - All content
Feed Link https://arstechnica.com/
Reply 0 comments