Black Holes May Not Exist, but Fuzzballs Might, Wild Theory Suggests
upstart writes in with an IRC submission for Runaway1956:
Black holes may not exist, but fuzzballs might, wild theory suggests:
[...] In string theory, black holes are neither black nor holes. Instead, the best metaphor to explain what a fuzzball is to look at another compact-and-weird object in the universe: neutron stars.
Neutron stars are what happens when an object doesn't quite have enough gravity to compress into what we call a black hole. Inside a neutron star, matter is compressed into its highest density state possible. Neutrons are one of the fundamental constituents of atoms, but they usually play along with other particles such as protons and electrons. But in a neutron star, that kind of atomic camaraderie breaks down and dissolves, leaving behind just neutrons crammed together as tightly as possible.
With fuzzballs, the fundamental strings stop working together and simply crowd together, becoming a large, well, ball of strings. A fuzzball.
Fuzzballs aren't fully fleshed out, even in theory, because as cool as string theory sounds, nobody has ever been able to come up with a complete mathematical solution for it - and so fuzzballs aren't just fuzzy in physical reality, but also fuzzy in mathematical possibility.
Still, we might be able to find fuzzballs with upcoming surveys, as described in a review article published Oct. 27 in the preprint journal arXiv. We are just now beginning to move past proving the existence of black holes and toward probing the details of how they behave, and our best way to do it is through gravitational waves.
Read more of this story at SoylentNews.