Quantum Device Performs 2.6 Billion Years of Computation in 4 Minutes
upstart writes in with an IRC submission:
Quantum device performs 2.6 billion years of computation in 4 minutes:
I am a great believer in solving problems with lasers. Are you suffering from a severely polarized society and a fast-growing population living below the poverty line? Well, I have the laser to solve all your problems.
OK, maybe not. But when it comes to quantum computing, I am of the belief that lasers are the future. I suspect that the current architectures are akin to the Colossus or the ENIAC: they are breakthroughs in their own right, but they are not the future. My admittedly biased opinion is that the future is optical. A new paper provides my opinion some support, demonstrating solutions to a mind-boggling 1030 problem space using a quantum optical system. Unfortunately, the support is a little more limited than I'd like, as it is a rather limited breakthrough.
[...] Unlike both of these options, an optical quantum computer could be a (large) chip-scale device that is powered by an array of laser diodes, with read out done by a series of single-photon detectors. None of these requires ultralow temperatures or vacuum (if photon-counting detectors are required, then liquid nitrogen would be required). Optical quantum computing will require temperature stability and, as this paper demonstrates, a rather complicated feedback system to ensure that the lasers are working exactly as required. However, all of that could be contained in one large rack-mounted box. And that is, for me, the critical advantage of optical systems.
This does not mean that light will win though. After all, germanium is a better semiconductor than silicon, but silicon still rules the roost.
Read more of this story at SoylentNews.