New Views of Quantum Jumps Challenge Core Tenets of Physics
upstart writes in with an IRC submission:
New Views of Quantum Jumps Challenge Core Tenets of Physics:
The new study, published in Physical Review Research, models the step-by-step, cradle-to-grave evolution of quantum jumps-from the initial lower-energy state of the system, known as the ground state, then a second one where it has higher energy, called the excited state, and finally the transition back to the ground state. This modeling shows that the predictable, "catchable" quantum jumps must have a noncatchable counterpart, says author Kyrylo Snizhko, a postdoctoral researcher now at Karlsruhe Institute of Technology in Germany, who was formerly at the Weizmann Institute of Science in Israel, where the study was performed.
Specifically, by "noncatchable" the researchers mean that the jump back to the ground state will not always be smooth and predictable. Instead the study's results show that such an event's evolution depends on how "connected" the measuring device is to the system (another peculiarity of the quantum realm, which, in this case, relates to the timescale of the measurements, compared with that of the transitions). The connection can be weak, in which case a quantum jump can also be predictable through the pause in clicks from the qubit's side activity, in the way used by the Yale experiment.
Read more of this story at SoylentNews.