Record-Breaking Laser Link Could Provide Test Of Einstein's Theory
Arthur T Knackerbracket has processed the following story:
Scientists from the International Centre for Radio Astronomy Research (ICRAR) and the University of Western Australia (UWA) have set a world record for the most stable transmission of a laser signal through the atmosphere.
In a study published today in the journal Nature Communications, Australian researchers teamed up with researchers from the French National Centre for Space Studies (CNES) and the French metrology lab Systemes de Reference Temps-Espace (SYRTE) at Paris Observatory.
The team set the world record for the most stable laser transmission by combining the Aussies' phase stabilization technology with advanced self-guiding optical terminals. Together, these technologies allowed laser signals to be sent from one point to another without interference from the atmosphere.
ICRAR adds via their press release:
Lead author Benjamin Dix-Matthews, a PhD student at ICRAR and UWA, said the technique effectively eliminates atmospheric turbulence. "We can correct for atmospheric turbulence in 3D, that is, left-right, up-down and, critically, along the line of flight," he said. "It's as if the moving atmosphere has been removed and doesn't exist. It allows us to send highly-stable laser signals through the atmosphere while retaining the quality of the original signal."
The result is the world's most precise method for comparing the flow of time between two separate locations using a laser system transmitted through the atmosphere.
ICRAR-UWA senior researcher Dr Sascha Schediwy said the research has exciting applications. "If you have one of these optical terminals on the ground and another on a satellite in space, then you can start to explore fundamental physics," he said. "Everything from testing Einstein's theory of general relativity more precisely than ever before, to discovering if fundamental physical constants change over time."
Also at: Science Daily
Journal Reference:
Benjamin P. Dix-Matthews, Sascha W. Schediwy, David R. Gozzard, et al. Point-to-point stabilized optical frequency transfer with active optics [open], Nature Communications (DOI: 10.1038/s41467-020-20591-5)
Original Submission #1 Original Submission #2
Read more of this story at SoylentNews.