Making the Shift from Blue to Red for Better LEDs
martyb writes:
Making the shift from blue to red for better LEDs:
Micro-LEDs are a promising technology for the next generation of displays. They have the advantage of being energy efficient and very small. But each LED can only emit light over a narrow range of colors. A clever solution is to create devices that combine many different LEDs, each emitting a different color. Full-color micro-displays can be created by combining red, green and blue (RGB) micro-LEDs. Now, a KAUST team of Zhe Zhuang, Daisuke Iida and Kazuhiro Ohkawa have worked to develop a more efficient red LED.
The emission color of an LED is determined by the material properties of the semiconductor. For example, nitride semiconductors can be used to make blue and green micro-LEDs, whereas phosphide semiconductors are used for red light. But combining different semiconductors in this way makes construction of RGB micro-LEDs more difficult and expensive. Besides, the efficiency of phosphide micro-LEDs reduces significantly with shrinking chip size.
Red-light emitting indium gallium nitride can be created by increasing the materials' indium content. But this tends to lower the efficiency of the resulting LED because there is a mismatch between the separation of atoms in the GaN and InGaN, which causes atomic-level imperfections. Moreover, damage to the sidewalls of an InGaN micro-LED induced during the fabrication process makes the new device less efficient. "But we have a chemical treatment to remove the damage and retain the high crystal quality of the InGaN and GaN sidewall interface," explains Zhuang.
Journal Reference:
Daisuke Iida, Kazuhiro Ohkawa, Zhe Zhuang. Investigation of InGaN-based red/green micro-light-emitting diodes [open], Optics Letters (DOI: 10.1364/OL.422579)
Read more of this story at SoylentNews.