How Do We Learn to Learn? New Research Offers an Education
upstart writes:
Researchers have frequently studied the machinations of memory--specifically, how neurons store the information gained from experience so that the same information can be recalled later. However, less is known about the underlying neurobiology of how we "learn to learn"--the mechanisms our brains use to go beyond drawing from memory to utilize past experiences in meaningful, novel ways.
A greater understanding of this process could point to new methods to enhance learning and to design precision cognitive behavioral therapies for neuropsychiatric disorders like anxiety, schizophrenia, and other forms of mental dysfunction.
To explore this, the researchers conducted a series of experiments using mice, who were assessed for their ability to learn cognitively challenging tasks. Prior to the assessment, some mice received "cognitive control training" (CCT). They were put on a slowly rotating arena and trained to avoid the stationary location of a mild shock using stationary visual cues while ignoring locations of the shock on the rotating floor. CCT mice were compared to control mice. One control group also learned the same place avoidance, but it did not have to ignore the irrelevant rotating locations.
The use of the rotating arena place avoidance methodology was vital to the experiment, the scientists note, because it manipulates spatial information, dissociating the environment into stationary and rotating components. Previously, the lab had shown that learning to avoid shock on the rotating arena requires using the hippocampus, the brain's memory and navigation center, as well as the persistent activity of a molecule (protein kinase M zeta [PKM?]) that is crucial for maintaining increases in the strength of neuronal connections and for storing long-term memory.
Journal Reference:
Chung, Ain, Jou, Claudia, Grau-Perales, Alejandro, et al. Cognitive control persistently enhances hippocampal information processing, Nature (DOI: 10.1038/s41586-021-04070-5)
Read more of this story at SoylentNews.