Article 5SQ87 Brain Drain: Scientists Explain Why Neurons Consume So Much Fuel Even When at Rest

Brain Drain: Scientists Explain Why Neurons Consume So Much Fuel Even When at Rest

by
chromas
from SoylentNews on (#5SQ87)

upstart writes:

Brain drain: Scientists explain why neurons consume so much fuel even when at rest:

Dr. Ryan and his laboratory have shown in recent years that neurons' synaptic terminals, bud-like growths from which they fire neurotransmitters, are major consumers of energy when active, and are very sensitive to any disruption of their fuel supply. In the new study they examined fuel use in synaptic terminals when inactive, and found that it is still high.

This high resting fuel consumption, they discovered, is accounted for largely by the pool of vesicles at synaptic terminals. During synaptic inactivity, vesicles are fully loaded with thousands of neurotransmitters each, and are ready to launch these signal-carrying payloads across synapses to partner neurons.

Why would a synaptic vesicle consume energy even when fully loaded? The researchers discovered that there is essentially a leakage of energy from the vesicle membrane, a "proton efflux," such that a special "proton pump" enzyme in the vesicle has to keep working, and consuming fuel as it does so, even when the vesicle is already full of neurotransmitter molecules.

The experiments pointed to proteins called transporters as the likely sources of this proton leakage. Transporters normally bring neurotransmitters into vesicles, changing shape to carry the neurotransmitter in, but allowing at the same time for a proton to escape -- as they do so. Dr. Ryan speculates that the energy threshold for this transporter shape-shift was set low by evolution to enable faster neurotransmitter reloading during synaptic activity, and thus faster thinking and action.

"The downside of a faster loading capability would be that even random thermal fluctuations could trigger the transporter shape-shift, causing this continual energy drain even when no neurotransmitter is being loaded," he said.

Journal Reference:
Camila Pulido and Timothy A. Ryan. Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals, Science Advances (DOI: 10.1126/sciadv.abi9027)

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments