A Crunching Multiverse to Solve Two Fundamental Physics Puzzles at Once
upstart writes:
A Crunching Multiverse To Solve Two Fundamental Physics Puzzles at Once:
A duo of theorists proposes a new theory to explain both the surprisingly small mass of the Higgs boson and the puzzling symmetry properties of the strong force.
The discovery of the Higgs boson was a landmark in the history of physics. It explained something fundamental: how elementary particles that have mass get their masses. But it also marked something no less fundamental: the beginning of an era of measuring in detail the particle's properties and finding out what they might reveal about the nature of the universe.
One such property is the particle's mass, which at 125 GeV is surprisingly small. Many theories have been put forward to explain this small mass, but none has so far been confirmed with data. In a paper just published in Physical Review Letters, Raaele Tito D'Agnolo of the French Alternative Energies and Atomic Energy Commission (CEA) and Daniele Teresi of CERN propose a new theory to explain both the lightness of the Higgs boson and another fundamental physics puzzle.
In broad brushes, the duo's theory works like this. In its early moments, the universe is a collection of many universes each with a different value of the Higgs mass, and in some of these universes the Higgs boson is light. In this multiverse model, universes with a heavy Higgs boson collapse in a big crunch in a very short time, whereas universes with a light Higgs boson survive this collapse. Our present-day universe would be one of these surviving light-Higgs universes.
Read more of this story at SoylentNews.