Article 62TSB Ultrathin Dental Camera Inspired By Insect-Eye Structure

Ultrathin Dental Camera Inspired By Insect-Eye Structure

by
janrinok
from on (#62TSB)

Arthur T Knackerbracket has processed the following story:

Conventional dental photography technology has had a limitation in using inconvenient tools such as mirrors and cheek retractors. Dentists require basic teeth images from various angles, such as right/left buccal and maxillary/mandibular occlusal, for dental health inspection. To acquire these images, patients feel discomfort because dentists must put a mirror into the mouth to capture the reflected teeth image through a handheld camera.

A compact intraoral dental camera can overcome the discomfort and scan the condition of teeth. However, due to the restricted depth of field and field-of-view, the conventional device has limitations in close-up imaging for observing tooth decay in detail and wide-angle imaging for capturing the entire arrangement of teeth.

Various species of compound insect eyes have superior visual characteristics, such as wide viewing angle and large depth of field with compact visual organs made up of tiny lenses. Insect eyes give inspiration for miniaturized cameras, and insect-inspired cameras can solve the problems of conventional compact cameras, such as limited observation range. However, previously developed insect cameras have drawbacks in low-resolution or limited functions.

[...] The BIOC involves a new configuration of convex-concave lens and inverted microlens arrays (iMLA) and a single CMOS image sensor on a flexible printed circuit board in a handpiece holder. The convex-concave lens substantially increases the field of view up to 143 degrees, and iMLAs reduce optical aberration by the scaling law. In addition, the new camera overcomes many chronic issues of conventional intraoral cameras, such as limited depth-of-field, thick total-track-length, and limited functional imaging.

There must be more potential uses for a camera such as this - any ideas?

More information: Kisoo Kim et al, Biologically inspired intraoral camera for multifunctional dental imaging, Journal of Optical Microsystems (2022).
DOI: 10.1117/1.JOM.2.3.031202

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title
Feed Link https://soylentnews.org/
Reply 0 comments