Protons May be Stretchier Than Physics Predicts
upstart writes:
Quarks inside the particles seem to move more than they should in an electric field:
The subatomic particles are built of smaller particles called quarks, which are bound together by a powerful interaction known as the strong force. New experiments seem to show that the quarks respond more than expected to an electric field pulling on them, physicist Nikolaos Sparveris and colleagues report October 19 in Nature. The result suggests that the strong force isn't quite as strong as theory predicts.
It's a finding at odds with the standard model of particle physics, which describes the particles and forces that combine to make up us and everything around us. The result has some physicists stumped about how to explain it - or whether to even try.
"It is certainly puzzling for the physics of the strong interaction, if this thing persists," says Sparveris, of Temple University in Philadelphia.
Such stretchiness has turned up in other labs' experiments, but wasn't as convincing, Sparveris says. The stretchiness that he and his colleagues measured was less extreme than in previous experiments, but also came with less experimental uncertainty. That increases the researchers' confidence that protons are indeed stretchier than theory says they should be.
Read more of this story at SoylentNews.