Article 6A4VD Fourier Transformations Reveal How AI Learns Complex Physics

Fourier Transformations Reveal How AI Learns Complex Physics

by
janrinok
from SoylentNews on (#6A4VD)

guest reader writes:

Fourier Transformations Reveal How AI Learns Complex Physics:

One of the oldest tools in computational physics - a 200-year-old mathematical technique known as Fourier analysis - can reveal crucial information about how a form of artificial intelligence called a deep neural network learns to perform tasks involving complex physics like climate and turbulence modeling, according to a new study.

In the paper, Hassanzadeh, Adam Subel and Ashesh Chattopadhyay, both former students, and Yifei Guan, a postdoctoral research associate, detailed their use of Fourier analysis to study a deep learning neural network that was trained to recognize complex flows of air in the atmosphere or water in the ocean and to predict how those flows would change over time. Their analysis revealed "not only what the neural network had learned, it also enabled us to directly connect what the network had learned to the physics of the complex system it was modeling," Hassanzadeh said.

"Deep neural networks are infamously hard to understand and are often considered 'black boxes,'" he said. "That is one of the major concerns with using deep neural networks in scientific applications. The other is generalizability: These networks cannot work for a system that is different from the one for which they were trained."

Hassanzadeh's team first performed the Fourier transformation on the equation of its fully trained deep-learning model. Each of the model's approximately 1 million parameters act like multipliers, applying more or less weight to specific operations in the equation during model calculations. In an untrained model, parameters have random values. These are adjusted and honed during training as the algorithm gradually learns to arrive at predictions that are closer and closer to the known outcomes in training cases. Structurally, the model parameters are grouped in some 40,000 five-by-five matrices, or kernels.

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments