Article 6EMH8 Machine Learning Helps Researchers Identify Hit Songs With 97% Accuracy

Machine Learning Helps Researchers Identify Hit Songs With 97% Accuracy

by
janrinok
from SoylentNews on (#6EMH8)

hubie writes:

Researchers have now applied machine learning (ML) to high-frequency neurophysiologic data to improve hit song prediction accuracy:

Every day, tens of thousands of songs are released. This constant stream of options makes it difficult for streaming services and radio stations to choose which songs to add to playlists. To find the ones that will resonate with a large audience, these services have used human listeners and artificial intelligence. This approach, however, lingering at a 50% accuracy rate, does not reliably predict if songs will become hits.

Now, researchers in the US have used a comprehensive machine learning technique applied to brain responses and were able to predict hit songs with 97% accuracy.

"By applying machine learning to neurophysiologic data, we could almost perfectly identify hit songs," said Paul Zak, a professor at Claremont Graduate University and senior author of the study published in Frontiers in Artificial Intelligence. "That the neural activity of 33 people can predict if millions of others listened to new songs is quite amazing. Nothing close to this accuracy has ever been shown before."

Study participants were equipped with off-the-shelf sensors, listened to a set of 24 songs, and were asked about their preferences and some demographic data. During the experiment, the scientists measured participants' neurophysiologic responses to the songs. "The brain signals we've collected reflect activity of a brain network associated with mood and energy levels," Zak said. This allowed the researchers to predict market outcomes, including the number of streams of a song - based on the data of few.

[...] After data collection, the researchers used different statistical approaches to assess the predictive accuracy of neurophysiological variables. This allowed for direct comparison of the models. To improve predictive accuracy, they trained a ML model that tested different algorithms to arrive at the highest prediction outcomes.

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments