by John on (#61MJZ)
Given a sequence a1, a2, a3, … let L be the limit of the ratio of consecutive terms: Then the series converges if L < 1 and diverges if L > 1. However, that’s not the full story. Here is an example from Ernesto Cesàro (1859–1906) that shows the ratio test to be more subtle […]The post Ratio test counterexample first appeared on John D. Cook.